THE CLASSICAL MODEL

- The Classical model dominated the economics profession before the Great Depression.
- Assumed that business cycle was short-run and would "take care of itself."
- Emphasis was on long-run economic growth.
- The "Neoclassical" model is based on the "Classical" model – with a few minor modifications.

THE CLASSICAL MODEL

Key Ideas:

- 1. Focus is long-run growth.
 - Short-run fluctuations will adjust automatically.
- 2. Markets clear (reach equilibrium).
 - Laissez-faire policy.
- 3. Growth is driven by supply side.
 - Emphasis on resources

CLASSICAL MODEL ASSUMPTION: MARKETS CLEAR

It would be better for all if we just left the economy alone.

CLASSICAL MODEL ASSUMPTION: AGGREGATE SUPPLY

- Classical economists were *primarily* interested in what determines output
- Demand is not a problem in the long-run
- Reason: Say's Law

Say's Law

"Supply creates its own demand."

 By producing goods and services, firms <u>create</u> a <u>total demand</u> for goods and services equal to what they have produced.

Say's Law

- Full-employment will be maintained automatically.
- Total spending will be sufficient to produce the total output produced.

Say's law rules out the possibility of a widespread surplus of goods.

Say's Law

Demand

Total Spending

= Sum of the planned purchases of:

Household sector (C)

→ Business sector (I^P)

+Government sector (G)

 $= C + I^{P} + G$

Note: the ^P in I^P means "planned"

Spending by Business Firms

- I^p = Planned spending by business firms on capital goods.
- I^p = I changes in inventories
 - Changes in inventories are "unplanned."
 - Occur when firms sell less/more than expected.

Household Spending

C = Consumption Spending out of Disposable Income.

Disposable Income = Income after Net Taxes.

$$Y_d = Y - T$$

Net Taxes = Taxes - Transfers

$$T = T_x - T_r$$

Government Spending

- G = Government purchases of goods and services
 - Does not include Transfers (money transferred from government to households, e..g. Social Security)
 - Includes spending by all levels of government (Federal, state, local)

The Circular Flow

Total Spending

Total Spending = $C + I^{P} + G$ = Output!

Classical Conclusion: Output generates sufficient income to purchase everything produced.

As long as everything is spent!

Leakages and Injections

- Households:
- $C = Y_d S$
- S = Savings

What do households do with their savings?

Demand for Loanable Funds

- Savers supply funds to borrowers
- Households receive interest payments on these funds.
- Quantity of funds supplied depends on the interest rate

Demand for Loanable Funds

- Businesses: to finance planned investment spending.
- Government: to finance deficit spending.
- Quantity of funds supplied depends on the interest rate

Loanable Funds Market: Example

- Lower interest rate means loans are cheaper. Example, firm is considering 3 projects:
 - Project #1 has expected return of 4%
 - Project #2 has expected return of 5%
 - Project 3 has expected return of 6%
- If interest rate is 5% then, only Projects #2 and #3 are worthwhile.
 - Project #1 would yield only 4%, but funds would cost 5%.
- If interest rate falls to 3%, then all of the projects are worthwhile.
- i.e. lower interest rate, higher quantity demand of funds.

Government Demand for Loanable Funds

Budget = Revenues – Expenditures

- Revenues = Taxes = T_x
- Expenditures = Purchases plus Transfers = G + T_r
- Budget = $T_x (G + T_r)$
- Budget = $T_x G T_r$

Budget = T - G

• $T = Net Taxes = T_x - Transfers$

Government Demand for Loanable Funds

Federal Government Budget:

- T G < 0 is a budget deficit
- T G > 0 is budget surplus
- T G = 0 is balanced budget

Note: Government borrowing is not dependent on interest rate. It is dependent on political decisions.

per Year

per Year

KEY IDEAS:

- Savings are a function of the interest rate.
- Investment spending is a function of the interest rate.
- Both are, therefore, determined in the same market.

KEY IDEAS:

- Classical model assumes all markets clear.
 - Loanable funds market will reach equilibrium,
 - Q_s (savings) = Q_d (investment)
- Leakages = Injections
- Say's law holds:
 - Total spending = total output

Leakages & Injections Summary Leakages:

- From Household Income: Savings & Net Taxes
- **Injections:**
- From Business: Investment
- From Government: Government Purchases
- Leakages = Injections

S + T = I + G

Open Economy*

Spending = $C + I^{P} + G + (X - IM)$

- X = Exports
- Exports = Injection into Domestic Spending from other countries
- IM = Imports
- Imports = Leakage from Domestic Spending.

 *Open economy means an economy that engages in international trade and finance.

Open Economy

Trade Balance = X – M

- Trade Deficit: X < M or (X M) < 0
- Trade Surplus: X > M or (X M) > 0
- Balanced Trade: X = M

Open Economy

Open Economy Model: Y = Income from GDP $Y = C + I^{P} + G + (X - IM)$ E = <u>Domestic</u> Expenditures $F = C + I^{P} + G$ Y - E = X - M

Open Economy

Trade Balance

 Difference between income and expenditures = trade balance

 $Y - E = X - M = \Delta$ Assets

If Y < E = X < E = Sale of Assets

If Y > E = X > E = Asset accumulation.

Classical Model View

- Balanced trade: Exports = Imports
 - Say's law holds
 - Total spending on the country's output will be equal in value to its total output

Classical Model View

Trade deficit = IM – X

- Sale of assets = Supply of loanable funds by foreigners.
- Supply of loanable funds from foreigners = trade deficit.
- Total supply of loanable funds = supply from domestic savings + supply from foreigners.

Classical Model View

Trade deficit = IM - X

- Loanable Funds Market Equilibrium:
- $S + (IM X) = I^{P} + (G T)$
- Leakages = Injections

Say's law still holds

